AWS Simple Queue Service Case Study
Amazon Simple Queue Service (SQS) is a fully managed message queuing service that enables you to decouple and scale microservices, distributed systems, and serverless applications. SQS eliminates the complexity and overhead associated with managing and operating message oriented middleware, and empowers developers to focus on differentiating work. Using SQS, you can send, store, and receive messages between software components at any volume, without losing messages or requiring other services to be available. Get started with SQS in minutes using the AWS console, Command Line Interface or SDK of your choice, and three simple commands.
SQS offers two types of message queues. Standard queues offer maximum throughput, best-effort ordering, and at-least-once delivery. SQS FIFO queues are designed to guarantee that messages are processed exactly once, in the exact order that they are sent.
Benefits:
Eliminate administrative overhead
AWS manages all ongoing operations and underlying infrastructure needed to provide a highly available and scalable message queuing service. With SQS, there is no upfront cost, no need to acquire, install, and configure messaging software, and no time-consuming build-out and maintenance of supporting infrastructure. SQS queues are dynamically created and scale automatically so you can build and grow applications quickly and efficiently.
Reliably deliver messages
Use Amazon SQS to transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be available. SQS lets you decouple application components so that they run and fail independently, increasing the overall fault tolerance of the system. Multiple copies of every message are stored redundantly across multiple availability zones so that they are available whenever needed.
Keep sensitive data secure
You can use Amazon SQS to exchange sensitive data between applications using server-side encryption (SSE) to encrypt each message body. Amazon SQS SSE integration with AWS Key Management Service (KMS) allows you to centrally manage the keys that protect SQS messages along with keys that protect your other AWS resources. AWS KMS logs every use of your encryption keys to AWS CloudTrail to help meet your regulatory and compliance needs.
Scale elastically and cost-effectively
Amazon SQS leverages the AWS cloud to dynamically scale based on demand. SQS scales elastically with your application so you don’t have to worry about capacity planning and pre-provisioning. There is no limit to the number of messages per queue, and standard queues provide nearly unlimited throughput. Costs are based on usage which provides significant cost saving versus the “always-on” model of self-managed messaging middleware.
Functionality:
- Unlimited queues and messages: Create unlimited Amazon SQS queues with an unlimited number of message in any region
- Payload Size: Message payloads can contain up to 256KB of text in any format. Each 64KB ‘chunk’ of payload is billed as 1 request. For example, a single API call with a 256KB payload will be billed as four requests. To send messages larger than 256KB, you can use the Amazon SQS Extended Client Library for Java, which uses Amazon S3 to store the message payload. A reference to the message payload is sent using SQS.
- Batches: Send, receive, or delete messages in batches of up to 10 messages or 256KB. Batches cost the same amount as single messages, meaning SQS can be even more cost effective for customers that use batching.
- Long polling: Reduce extraneous polling to minimize cost while receiving new messages as quickly as possible. When your queue is empty, long-poll requests wait up to 20 seconds for the next message to arrive. Long poll requests cost the same amount as regular requests.
- Retain messages in queues for up to 14 days.
- Send and read messages simultaneously.
- Message locking: When a message is received, it becomes “locked” while being processed. This keeps other computers from processing the message simultaneously. If the message processing fails, the lock will expire and the message will be available again.
- Queue sharing: Securely share Amazon SQS queues anonymously or with specific AWS accounts. Queue sharing can also be restricted by IP address and time-of-day.
- Server-side encryption (SSE): Protect the contents of messages in Amazon SQS queues using keys managed in the AWS Key Management Service (AWS KMS). SSE encrypts messages as soon as Amazon SQS receives them. The messages are stored in encrypted form and Amazon SQS decrypts messages only when they are sent to an authorized consumer.
- Dead Letter Queues (DLQ): Handle messages that have not been successfully processed by a consumer with Dead Letter Queues. When the maximum receive count is exceeded for a message it will be moved to the DLQ associated with the original queue. Set up separate consumer processes for DLQs which can help analyze and understand why messages are getting stuck. DLQs must be of the same type as the source queue (standard or FIFO).
Case Studies:
Oyster
Since its 2009 launch, Oyster has published more than one million high-quality digital images. When this massive volume of images became too cumbersome to handle in-house, the company decided to offload the content to a central repository on Amazon Simple Storage Service (Amazon S3). “We migrated to Amazon S3 in 2010,” says Eytan Seidman, Co-Founder and Vice President of Product. “We chose moving to the cloud and Amazon S3 because storing images in our data center would have been too costly. Amazon S3 was a more economical solution.”
Oyster reprocesses its entire collection of photographic images a few times each year to update the copyright year and, if necessary, to change the watermarks. Using their previous solution, reprocessing the entire collection of photographs required about 800 hours to complete. In addition, Oyster often recreated existing images in new formats and sizes for mobile and tablet devices. Resizing existing images and adding new ones was slowing down the rate at which the company was able to process the collection. “Our processes were slowing down,” says Seidman. “When the iPad with Retina display came out, for example, it took us more than a week to create new sizes specifically for that resolution.” Oyster considered purchasing additional hardware, but found the cost of new hardware and routine maintenance was too high, especially when the machines would sit idle most of the time.
Moreover, there were numerous software bugs in the multiprocessing solution that the company used, but since the solution didn’t scale, Oyster didn’t bother to fix them.
Oyster’s old system needed approximately 400 hours to process one million photos. By using AWS, the company can process the same number of photos in about 20 hours — a 95 percent improvement. “It took less time to rewrite the code and do a full processing job with AWS than it took to do a single run with the old method,” says Seidman. “It used to take close to a week to produce photos specifically for the iPad. With AWS, we can create the photos in just a few hours. The documentation is straightforward and the dashboards are incredibly helpful.”
Oyster has also been able to reduce in-house hardware expenses by repurposing two of its old servers, which were sitting idle more than 80 percent of the time. “We estimate that we saved roughly $10,000 in capital expenditures by moving to AWS, and reduced our operating expenses by an additional $10,000,” Seidman says. He believes that AWS is a perfect match for any company performing similar batch processing. “AWS lets us move faster without worrying about machine expenditures or maintenance, which frees us to focus on other things.”
Redbus
The company previously ran its operations from a traditional data center by purchasing and renting its systems and infrastructure. In addition to the expense, several logistical problems evolved from this arrangement. The biggest problem was that the infrastructure could not effectively handle processing fluctuations, which had a negative impact on productivity. Additionally, the procurement of servers or upgrading the server configuration was an extremely time-consuming endeavor. Over time, redBus realized that a better solution was imperative — a solution that offered scalability to handle the company’s processing fluctuations. redBus looked to Amazon Web Services (AWS) for a solution.
Since migrating to AWS, redBus has seen measurable improvements in the bottom line. Padmaraju says, “By scaling up and down dynamically based on the load, we maintain performance as well as minimize cost. With the time savings that the IT and development staffs obtain from the AWS solution, AWS gives us an overall cost benefit of about 30–40%.” He adds, “By hosting at [the AWS Asia Pacific (Singapore) region], redBus.in gained significantly in terms of website performance by way of reduced latency (about 4x). This is a great advantage when the customers are from India.”
Of the many excellent characteristics of AWS, perhaps the most significant to redBus is the ability to “instantly replicate the whole setup on demand for testing by creating and destroying instances on demand for experimentation, thereby reducing the time to market.” Less time to market translates to increased profitability and success.
The travel agency anticipates expanding the AWS solution to include Amazon Simple Notification Service (Amazon SNS) and Amazon Simple Queue Service (Amazon SQS) for monitoring, alerts, and intercommunication. “Amazon SQS is an especially good solution for enabling messaging between external applications and our applications,” says Padmaraju.
Since joining forces with AWS, redBus has gained the freedom to experiment on new solutions and applications at minimal cost, increased the efficiency of its operations, and improved its profitability.
That’s all folks. Thanks for reading :)